标量扰动
记录一下宇宙学中规范扰动理论中的Mukhanov-Sasaki(MS)方程。
\[ \begin{equation} \label{eq:ms-equation} u^{\pprime}-c_s^2\Delta u - \frac{\theta^{\pprime}}{\theta}u = 0. \end{equation} \]
以标量扰动以及完美流体为例,验证MS方程\(\eqref{eq:ms-equation}\)。
为了叙述方便,以下将规范扰动简称为扰动,在物理量上添加横线代表相对应的规范不变量,若不至于产生误解,则省略横线。
完美流体的能动张量为 \[ \begin{equation} \label{eq:perfect-fluid-energy-mommentum-tensor} T^{\alpha}_{\ \beta} = (\varepsilon + p) u^{\alpha}u_{\beta}-p\delta^{\alpha}_{\ \beta}. \end{equation} \] 相应的一阶扰动为 \[ \begin{equation} \label{eq:guage-invariant-perturbation-for-perfect-fluid} \overline{\delta T}^{0}_0 = \overline{\delta\varepsilon},\quad \overline{\delta T}^{0}_i = \frac{1}{a}(\varepsilon_0+p_0)(\overline{\delta u}_{\parallel i}+\overline{\delta u}_{\bot i}), \quad \overline{\delta T}^i_j = -\overline{\delta p}\delta^i_j. \end{equation} \] 其中\(\overline{\delta\varepsilon},\overline{\delta u}_{\parallel i},\overline{\delta p}\)对应标量扰动,而\(\overline{\delta u}_{\bot i}\)有旋无源,贡献为矢量扰动。
因为\(\delta T^i_{\ j}=0\),当\(i\ne j\)。因而\((ij)\)分量对应的标量扰动方程约化为 \[ \begin{equation} (\Phi-\Psi)_{,ij} = 0 \qquad (i\ne j). \end{equation} \] 因而有\(\Phi = \Psi\)。故而标量扰动满足的规范方程组的形式具体如下 \[ \begin{align} \Delta \Phi - 3\mathcal{H}(\Phi^{\prime}+\mathcal{H}\Phi) =4\pi Ga^2\overline{\delta\varepsilon}, \label{eq:scalar-guage-invariant-perturbation-equations-00} \\ (a\Phi)_{,}^{\prime}=4\pi Ga^2(\varepsilon_0+p_0)\overline{\delta u}_{\parallel i}, \label{eq:scalar-guage-invariant-perturbation-equations-0i} \\ \Phi^{\pprime}+3\mathcal{H}\Phi^{\prime}+(2\mathcal{H^\prime+H^2}\Phi) = 4\pi Ga^2\overline{\delta p}. \label{eq:scalar-guage-invariant-perturbation-equations-ij} \end{align} \] 根据热力学可知压强为内能和熵的函数,\(p=p(\varepsilon, S)\)。压强的涨落\(\overline{\delta p}\)可以表示为 \[ \begin{equation} \label{eq:sound-speed} \overline{\delta p}=c_s^2\overline{\delta\varepsilon}+\tau\delta S. \end{equation} \] 这里只考虑绝热扰动(\(\delta S=0\)),故\(\overline{\delta p}=c_s^2\overline{\delta\varepsilon}\)。 联合方程\(\eqref{eq:scalar-guage-invariant-perturbation-equations-00}\)和\(\eqref{eq:scalar-guage-invariant-perturbation-equations-ij}\) 得到引力势\(\Phi\)满足的动力学方程 \[ \begin{equation} \label{eq:bardeen-equation} \Phi^{\pprime}+3(1+c_s^2)\mathcal{H}\Phi^{\prime}-c_s^2\Delta\Phi+\lrp{2\mathcal{H^\prime}+(1+3 c_s^2)\mathcal{H^2}}\Phi = 0 \end{equation} \] 方程\(\eqref{eq:bardeen-equation}\)称为bardeen方程,这个方程并不总是存在解析解。 不过有可能得到长波极限和短波极限下的渐进解。这可以通过引入新变量,改写方程形式消灭其中的摩擦项做到。
\[ \begin{equation} \begin{aligned} u&\equiv \exp\lrp{\frac{3}{2}\int (1+c_s^2)\mathcal{H}d\eta}\Phi \\ &=\exp\lrp{-\frac{1}{2}\int \lrp{1+\frac{p_0^{\prime}}{\varepsilon_0^{\prime}}} \frac{\varepsilon_0^{\prime}}{\varepsilon_0+p_0}d\eta}\Phi \\ &=\frac{\Phi}{(\varepsilon_0+p_0)^{1/2}}. \end{aligned} \end{equation} \] 其中用到了\(c_s^2=p_0^{\prime}/\varepsilon_0^{\prime}\),连续性方程 \(\varepsilon_0^{\prime}=-3\mathcal{H}(\varepsilon_0+p_0)\) 。以及 \[ \begin{equation} \theta\equiv \frac{1}{a}\lrp{1+\frac{p_0}{\varepsilon_0}}^{-1/2} =\frac{1}{a}\lrp{\frac{2}{3}\lrp{1-\frac{\mathcal{H^{\prime}}}{\mathcal{H^2}}}}^{-1/2}. \end{equation} \] 其中用到了背景方程 \[ \begin{equation} \label{eq:background-equation} \mathcal{H^2}=\frac{8\pi G}{3}a^2\varepsilon_0,\quad \mathcal{H^2-H^\prime}=4\pi Ga^2(\varepsilon_0+p_0). \end{equation} \] 经过复杂的计算,bardeen方程\(\eqref{eq:bardeen-equation}\)可以重写为不含摩擦项的MS方程 \[ \begin{equation} u^{\pprime}-c_s^2\Delta u-\frac{\theta^{\pprime}}{\theta} u = 0. \end{equation} \]
接下来,只进行验证MS方程和bardeen方程\(\eqref{eq:bardeen-equation}\)等价。
首先注意到 \[ \begin{equation} \begin{aligned} u^{\pprime}-\frac{\theta^{\pprime}}{\theta}u &= \lrp{\frac{u}{\theta}}^{\pprime}\theta+2\lrp{\frac{u}{\theta}}^{\prime}\theta^{\prime} \\ &=\lrp{\lrp{\frac{u}{\theta}}^{\prime}\theta}^{\prime} + \lrp{\frac{u}{\theta}}^{\prime}\theta^{\prime} \\ &= v^{\prime} + v\frac{\theta^{\prime}}{\theta}. \quad \text{令}(v=\lrp{\frac{u}{\theta}}^{\prime}\theta). \end{aligned} \end{equation} \] 故MS方程等价于 \[ \begin{equation} c_s^2\Delta u=v^{\prime}+v\frac{\theta^{\prime}}{\theta}. \end{equation} \] \(v\)和\(v^{\prime}\)的表达式分别为 \[ \begin{equation} \begin{aligned} &\begin{aligned} v\equiv \lrp{\frac{u}{\theta}}^{\prime}\theta &= \frac{1}{\lrp{\varepsilon_0+p_0}^{1/2}}\lrp{\Phi^{\prime}+\Phi\lrp{\mathcal{H}-\frac{1}{2}\frac{\varepsilon_0^{\prime}}{\varepsilon_0}}} \\ &= \frac{1}{\lrp{\varepsilon_0+p_0}^{1/2}} f. \end{aligned} \\ &\begin{aligned} v^{\prime}=\frac{1}{\lrp{\varepsilon_0+p_0}^{1/2}}\lrp{f^{\prime}-\frac{1}{2} f\frac{\lrp{\varepsilon_0+p_0}^{\prime}}{\varepsilon_0+p_0}}. \end{aligned} \end{aligned} \end{equation} \]
故MS方程等价于 \[ \begin{equation} c_s^2\Delta u = \frac{1}{\lrp{\varepsilon_0+p_0}^{1/2}}\lrp{f^{\prime} +f\lrp{\frac{\theta^{\prime}}{\theta}-\frac{1}{2} \frac{\lrp{\varepsilon_0+p_0}^{\prime}}{\varepsilon_0+p_0}}}. \end{equation} \] 为了后续计算方便,先计算几个表达式 \[ \begin{align} &\frac{\theta^{\prime}}{\theta} = \frac{\mathcal{H}}{2}(1+3 c_s^2)+\frac{1}{2}\frac{\varepsilon_0^{\prime}}{\varepsilon_0}, \\ &\frac{\lrp{\varepsilon_0^{\prime}}}{\varepsilon_0+p_0} =\frac{\lrp{1+\frac{p_0^{\prime}}{\varepsilon_0^{\prime}}}\varepsilon_0^{\prime}}{\varepsilon_0+p_0} =-3\mathcal{H}(1+c_s^2), \\ &\frac{\varepsilon_0^{\prime}}{\varepsilon_0} =-3\mathcal{H}\lrp{1+\frac{p_0}{\varepsilon_0}} =-2\mathcal{H}\lrp{1-\frac{\mathcal{H}^{\prime}}{\mathcal{H}^2}}, \\ &\lrp{\frac{\varepsilon_0^{\prime}}{\varepsilon_0}}^{\prime} =\frac{\varepsilon_0^{\prime}}{\varepsilon_0} \lrp{\mathcal{\frac{H^{\prime}}{H}}-3\mathcal{H}(1+c_s^2)- \frac{\varepsilon_0^{\prime}}{\varepsilon_0}}. \end{align} \]
故MS方程等价于 \[ \begin{equation} \begin{aligned} c_s^2\Delta\Phi &= f^{\prime} + f\lrp{\frac{\theta^{\prime}}{\theta}-\frac{1}{2} \frac{\lrp{\varepsilon_0+p_0}^{\prime}}{\varepsilon_0+p_0}} \\ &= \Phi^{\pprime}+\Phi^{\prime}\lrp{\mathcal{H}-\frac{1}{2}\frac{\varepsilon_0^{\prime}}{\varepsilon_0}} +\Phi\lrp{\mathcal{H}-\frac{1}{2}\frac{\varepsilon_0^{\prime}}{\varepsilon_0}}^{\prime} \\ &\ +\lrp{\Phi^{\prime}+\Phi\lrp{\mathcal{H}-\frac{1}{2}\frac{\varepsilon_0^{\prime}}{\varepsilon_0}}} \lrp{\mathcal{H}\lrp{2+3 c_s^2}+\frac{1}{2}\frac{\varepsilon_0^{\prime}}{\varepsilon_0}} \\ &=\Phi^{\pprime} + 3\mathcal{H}(1+3 c_s^2)\Phi^{\prime} \\ &\ +\Phi\lrp{\mathcal{H^{\prime}}-\lrp{\frac{1}{2} \frac{\varepsilon_0^{\prime}}{\varepsilon_0}}^{\prime} +\lrp{\mathcal{H}-\frac{1}{2}\frac{\varepsilon_0^{\prime}}{\varepsilon_0}} \lrp{\mathcal{H}\lrp{2+3 c_s^2}+\frac{1}{2}\frac{\varepsilon_0^{\prime}}{\varepsilon_0}}}, \end{aligned} \end{equation} \]
经过简单但复杂的计算,上式最后一行中的括号为 \[ \begin{equation} 2\mathcal{H^{\prime}}+\mathcal{H^2}\lrp{1+3 c_s^2}, \end{equation} \] 故MS方程确实等价于bardeen方程。显然MS方程是规范不变方程,引入的变量 \(u\)和\(\theta\)均为规范不变量。
曲率扰动
MS方程能够被写成更紧凑的形式 \[ \begin{equation} \lrb{\lrp{\frac{u}{\theta}}^{\prime}\theta^2}^{\prime} = c_s^2\theta\Delta u \end{equation} \] 在长波极限下,散度项\(\Delta u\)可以被忽略,故而我们找到了一个在超视界区域为常数的规范不变量 \[ \begin{equation} \label{eq:curvature-perturbation} \begin{aligned} \zeta &\equiv \frac{2}{3}\lrp{\frac{u}{\theta}}^{\prime}\theta^2 \\ &= \frac{v}{z} \end{aligned} \end{equation} \] 其中 \[ \begin{equation} v=\lrp{\frac{u}{\theta}}^{\prime}\theta,\quad z = \frac{1}{\theta}. \end{equation} \] 该变量即是文献中常见的标量曲率扰动\(\mathcal{R}\),通常在暴胀过程中会计算\(\mathcal{R}\)的功率谱\(P_{\mathcal{R}}(k)\)。
前面验证MS方程的过程中从数学的角度看,构造出的四个规范不变量\(u,v,\theta,z\) 满足了如下两个方程 \[ \begin{equation} \label{eq:middle-equations} c_s^2\Delta u=z\lrp{\frac{v}{z}}^{\prime},\quad v=\theta\lrp{\frac{u}{\theta}}^{\prime}. \end{equation} \] 满足上述方程的函数\(u\),在消除辅助函数\(v\)后自然得到MS方程。观察\(\zeta\)的定义 式\(\eqref{eq:curvature-perturbation}\)后,更希望找到\(v\)满足的方程。从方程组\(\eqref{eq:middle-equations}\)出发可以得到 \[ \begin{equation} v^{\pprime}-c_s^2\Delta v-\frac{z^{\pprime}}{z}v= 0 \end{equation} \] 巧合地是\(u\)和\(v\)满足的方程形式相同。实际上\(v\)满足的方程才是文献中提到的MS方程,\(u\)满足的方程只是形式相同,本质还是bardeen方程。 在暴胀过程中,根据规范不变量的定义 \[ \begin{equation} z=\frac{a\lrp{\varepsilon+p}^{1/2}}{H}=\frac{a\dot{\varphi}}{H} =\frac{a\varphi^{\prime}}{\mathcal{H}}. \end{equation} \] 其中\(\varphi\)是暴胀场。到这一步时,曲率扰动的功率谱就就呼之欲出了 \[ \begin{equation} \label{eq:curvature-perturbation-power-spectrum} P_{\zeta}(k)=P_{\mathcal{R}}(k) = \frac{k^{3}}{2\pi^2} \left\lvert \frac{v_k}{z}\right\rvert ^2 \end{equation} \] 暴胀过程中,变换到傅立叶空间中,\(v\)的\(k\)模\(v_k\)满足贝塞尔方程 \[ \begin{equation} \label{eq:bessel-equation} v_k^{\pprime}+\lrp{k^2-\frac{\nu^2-1/4}{\eta^2}}v_k = 0, \end{equation} \] 式中\(\nu=3/2+2\varepsilon_H-\eta_H\)。考虑到平面波边值条件 \[ \begin{equation} \label{eq:plane-wave-boundary-condition} v_k(\eta)\rightarrow \frac{1}{2k}e^{-ik\eta},\quad k\rightarrow \infty \end{equation} \] 贝塞尔方程\(\eqref{eq:bessel-equation}\)的解为 \[ \begin{equation} \label{eq:solution-for-ms-equation-in-inflation} v_k(\eta) =\frac{\sqrt{\pi}}{2}e^{i(\nu+1/2)\pi/2}\sqrt{-\eta}H_{\nu}^{(1)}(-k\eta). \end{equation} \] 式中\(H_{\nu}^{(1)}\)为第一类汉克尔函数。对于超视界扰动 \[ \begin{align} \label{eq:for-super-horizon} H_{\nu}^{(1)}(x\ll 1) \sim \sqrt{\frac{2}{\pi}}e^{-i\pi/2} 2^{\nu-3/2}\frac{\Gamma(\nu)}{\Gamma(3/2)}x^{-\nu}, \\ v_k(\eta) = e^{i(\nu-1/2)\pi/2}2^{\nu-3/2} \frac{\Gamma(\nu)}{\Gamma(3/2)}\frac{1}{\sqrt{2k}}(-k\eta)^{1/2-\nu}. \end{align} \] 故曲率扰动的功率谱为 \[ \begin{equation} \begin{aligned} P_{\mathcal{R}}(k) &= \frac{k^{3}}{2\pi^2}\left\lvert \frac{\nu_k}{z}\right\rvert ^2 \\ &= 2^{2\nu-3}\lrp{\frac{\Gamma(\nu)}{\Gamma(3/2)}}^2 \lrp{\frac{H}{\dot{\varphi}_0}}^2 \lrp{\frac{H}{2\pi}}^2 \lrp{\frac{k}{aH}}^{3-2\nu} \Bigg\lvert_{k=aH}. \end{aligned} \end{equation} \]